Wednesday, 10 February 2016

How Android Maintain Thread.

Threads 

      When an application launched, the system creates a thread of execution for the application. Called the main thread. Whole android application will work on main thread basically this thread is responsible to dispatch screen event like touch, click drawing event etc.  It is also the thread in which your application interacts with components from the Android UI toolkit (components from the android.widget and android.view packages). As such, the main thread is also sometimes called the UI thread.
The system does not create a separate thread for each instance of a component. All components that run in the same process are instantiated in the UI thread, and system calls to each component are dispatched from that thread. Consequently, methods that respond to system callbacks (such as onKeyDown() to report user actions or a lifecycle callback method) always run in the UI thread of the process.
when the user touches a button on the screen, your app's UI thread dispatches the touch event to the widget, which in turn sets its pressed state and posts an invalidate request to the event queue. The UI thread dequeues the request and notifies the widget that it should redraw itself. this single thread model can yield poor performance unless you implement your application properly. Specifically, if everything is happening in the UI thread, performing long operations such as network access or database queries will block the whole UI.
When the thread is blocked, no events can be dispatched, including drawing events. From the user's perspective, the application appears to hang. Even worse, if the UI thread is blocked for more than a few seconds (about 5 seconds currently) the user is presented with the infamous "application not responding" (ANR) dialog. The user might then decide to quit your application and uninstall it if they are unhappy.
Additionally, the Andoid UI toolkit is not thread-safe. So, you must not manipulate your UI from a worker thread—you must do all manipulation to your user interface from the UI thread. Thus, there are simply two rules to Android's single thread model:
1.       Do not block the UI thread
2.       Do not access the Android UI toolkit from outside the UI thread

Worker Thread

Because of the single thread model described above, it's vital to the responsiveness of your application's UI that you do not block the UI thread. If you have operations to perform that are not instantaneous, you should make sure to do them in separate threads ("background" or "worker" threads).

Using AsyncTask

AsyncTask allows you to perform asynchronous work on your user interface. It performs the blocking operations in a worker thread and then publishes the results on the UI thread, without requiring you to handle threads and/or handlers yourself.
To use it, you must subclass AsyncTask and implement the doInBackground() callback method, which runs in a pool of background threads. To update your UI, you should implement onPostExecute(), which delivers the result from doInBackground() and runs in the UI thread, so you can safely update your UI. You can then run the task by calling execute() from the UI thread.

Caution: Another problem you might encounter when using a worker thread is unexpected restarts in your activity due to a runtime configuration change (such as when the user changes the screen orientation), which may destroy your worker thread. To see how you can persist your task during one of these restarts and how to properly cancel the task when the activity is destroyed, see the source code for the Shelves sample application.

No comments:

Post a Comment